anti-SMN1 antibody from antibodies-online

Supplier Page

Supplier Page from
antibodies-online for
anti-SMN1 antibody

Description

Product Characteristics: Synonyms:
BCD541 antibody,Gemin 1 antibody,Gemin-1 antibody,Gemin1 antibody,OTTHUMP00000125198antibody,OTTHUMP00000223567 antibody,OTTHUMP00000223568 antibody,OTTHUMP00000224066antibody,OTTHUMP00000226924 antibody,SMA 1 antibody,SMA 2 antibody,SMA 3 antibody,SMA 4 antibody,SMAantibody,SMA@ antibody,SMA1 antibody,SMA2 antibody,SMA3 antibody,SMA4 antibody,SMN 1 antibody,SMNantibody,SMN-1 antibody,SMN1 antibody,SMNT antibody,Survival motor neuron protein antibody,Survival ofmotor neuron 1 (telomeric) antibody,survival of motor neuron 1 antibody,Survival of motor neuron 1, telomericantibody,T-BCD541 antibody
Target Information: This gene is part of a 500 kb inverted duplication on chromosome 5q13. This duplicated region contains at least four genes and repetitive elements which make it prone to rearrangements and deletions. The repetitiveness and complexity of the sequence have also caused difficulty in determining the organization of this genomic region. The telomeric and centromeric copies of this gene are nearly identical and encode the same protein. However, mutations in this gene, the telomeric copy, are associated with spinal muscular atrophy\, mutations in the centromeric copy do not lead to disease. The centromeric copy may be a modifier of disease caused by mutation in the telomeric copy. The critical sequence difference between the two genes is a single nucleotide in exon 7, which is thought to be an exon splice enhancer. Note that the nine exons of both the telomeric and centromeric copies are designated historically as exon 1, 2a, 2b, and 3-8. It is thought that gene conversion events may involve the two genes, leading to varying copy numbers of each gene. The protein encoded by this gene localizes to both the cytoplasm and the nucleus. Within the nucleus, the protein localizes to subnuclear bodies called gems which are found near coiled bodies containing high concentrations of small ribonucleoproteins (snRNPs). This protein forms heteromeric complexes with proteins such as SIP1 and GEMIN4, and also interacts with several proteins known to be involved in the biogenesis of snRNPs, such as hnRNP U protein and the small nucleolar RNA binding protein. Two transcript variants encoding distinct isoforms have been described. [provided by RefSeq, Sep 2008]