'Oil For The Joints' Offers Hope For Osteoarthritis Sufferers

Source : Boston University College of Engineering

A team of researchers led by a Boston University Biomedical Engineer has developed a new joint lubricant that could bring longer lasting relief to millions of osteoarthritis sufferers. The new synthetic polymer supplements synovial fluid, the natural lubricant in joints, and works better than comparable treatments currently available.

According to Boston University Professor of Biomedical Engineering Mark W. Grinstaff, the best fluid supplement now available offers temporary symptom relief but provides inadequate lubrication to prevent further degradation of the cartilage surfaces that cushion the joint. To achieve both objectives, Grinstaff, Beth Israel Deaconess Medical Center/Harvard Medical School orthopedic surgeon Brian Snyder and a team of Boston University chemistry and engineering students, fellows and clinicians have advanced the first synthetic synovial fluid. They describe the unique polymer and its performance in Journal of the American Chemical Society.

The most common form of joint disease and a leading cause of disability in the elderly, osteoarthritis (OA) affects about 27 million Americans and 200 million people worldwide. Characterized by pain and swelling, the disease emerges in hand, hip, knee and other commonly used joints where degradation of cartilage and synovial fluid results in bone-on-bone abrasion. Treatments range from anti-inflammatory drugs to total joint replacement. While there's no cure for OA, one treatment—injection of a polymer to supplement synovial fluid in the joint—promises to relieve symptoms and slow the disease's progression by reducing wear on cartilage surfaces.

"From our studies, we know our biopolymer is a superior lubricant in the joint, much better than the leading synovial fluid supplement, and similar to healthy synovial fluid," said Grinstaff. "When we used this new polymer, the friction between the two cartilage surfaces was lower, resulting in less wear and surface-to-surface interaction. It's like oil for the joints."

Originally produced last year for another study, the new polymer mimics some of the properties of natural polysaccharides, large compounds that link repetitive sequences of sugar molecules in a chainlike pattern.

"You put it between your fingers, and it's slippery," Grinstaff observed. "Once we made it, we wondered if we could use it as a lubricant and where it would be useful. That's how we thought of using it as a potential treatment for OA."

Another advantage of the biopolymer is its large molecular weight or size, which prevents it from seeping out of the joint, enabling longer lasting cartilage protection. Unlike the leading synovial fluid supplement, which lasts one or two days, the new polymer remains in the joint for more than two weeks.

###

The research is supported by the Wallace H. Coulter Foundation and Flex Biomedical, a startup cofounded by Grinstaff and Snyder.

  • <<
  • >>

Articles List

  • More than One Way to Change a Base

    More than One Way to Change a Base

    It’s easier than ever these days to clone and sequence DNA. Thanks to CRISPR/Cas and related technologies, it’s even straightforward to rewrite genomic sequences in living cells and organisms. But as powerful as it is, CRISPR, et al., cannot induce genetic rewrites in a test tube—genome editing requires cellular machinery to repair the DNA breaks the methods produce. Instead, researchers interested in mutating cloned genes on plasmids must revert to a tried-and-true method, site-directed mutagenesis. First described in the 1970s—and earning its inventor a share of the Nobel Prize in Chemistry in 1993—site-directed mutagenesis uses short oligonucleotides to introduce single base changes, as well as insertions and deletions, to DNA plasmids. Researchers can use the method to swap amino acids in expressed proteins, test clinically relevant mutations and tweak promoters. But there’s more than one way to change a base, and molecular-tools vendors have commercialized multiple strategies. Here, we review some of the more popular approaches to site-directed mutagenesis.
  • What Doesn’t Kill You … Testing for Chemical Toxicity

    What Doesn’t Kill You … Testing for Chemical Toxicity

    Understanding the effects of small molecules, compounds and chemicals on cells is the very core of drug discovery, one in which the pharmaceutical industry continues to invest billions of dollars. Yet alongside the question of whether such entities have a desired effect looms that of whether they have a toxic effect on those cells—and ultimately the tissues and organisms the cells compose. This question has equal importance to those who protect our environment and assure that our food is safe to eat. Testing chemical toxicity can take many forms, from looking for simple surrogates of death, such as the inability to exclude trypan blue, to sophisticated measures of changes in a specific cell type’s physiology. Various assays look at pathways leading to cell death, membrane integrity, depletion of energy, ability to proliferate and changes in differentiation. They are accomplished using instruments ranging from a hemocytometer and light microscope; to a Coulter counter, microplate reader or flow cytometer; to a high-content analysis solution found principally in screening cores at biotech and larger pharmaceutical companies. Screens for loss of viability are often the first line of inquiry, and only after an entity is shown to cause a decrease in survival is it then subjected to more nuanced assays [1]. Here we look at the principal means by which entities are tested for their effects on viability.

Disqus Comments