anti-SCARB2 Antibody from antibodies-online

Supplier Page

Supplier Page from
antibodies-online for
anti-SCARB2 Antibody

Description

Product Characteristics:
High density lipoproteins (HDLs) play a critical role in cholesterol metabolism and their plasma concentrations are inversely correlated with risk for atherosclerosis. SR-BI and SR-BII (previously known as SR-BI.2) are the alternatively spliced products of a single gene. SR-BII and SR-BI are identical except for the encoded c-terminal cytoplasmic domain. Both SR-BI and SR-BII bind HDL and mediates selective uptake of HDL cholesteryl ester, but with SR-BII having an approximately 4-fold lower efficiency than SR-BI. SR-BI and SR-BII are expressed primarily in liver and non-placental steroidgenic tissues. Although the role of these scavenger receptors is not completely clear, SR-BII mRNA results from the alternative splicing of SR-BI precursor transcripts with both isoforms mediating selective transfer of lipid between HDL and cells. Therefore, the relative expression and functional activities of these two isoforms create a potential means of regulating selective lipid transfer between HDL and cells.

Subcellular location: Cytoplasm, Cell membrane

Synonyms: AMRF, EPM4, LGP85, CD36L2, HLGP85, LIMP-2, LIMPII, SR-BII, Lysosome membrane protein 2, 85 kDa lysosomal membrane sialoglycoprotein, CD36 antigen-like 2, Lysosome membrane protein II, LIMP II, Scavenger receptor class B member 2, CD36, SCARB2, LIMP2

Target Information: The protein encoded by this gene is a type III glycoprotein that is located primarily in limiting membranes of lysosomes and endosomes. Earlier studies in mice and rat suggested that this protein may participate in membrane transportation and the reorganization of endosomal/lysosomal compartment. The protein deficiency in mice was reported to impair cell membrane transport processes and cause pelvic junction obstruction, deafness, and peripheral neuropathy. Further studies in human showed that this protein is a ubiquitously expressed protein and that it is involved in the pathogenesis of HFMD (hand, foot, and mouth disease) caused by enterovirus-71 and possibly by coxsackievirus A16. Mutations in this gene caused an autosomal recessive progressive myoclonic epilepsy-4 (EPM4), also known as action myoclonus-renal failure syndrome (AMRF). Alternatively spliced transcript variants encoding different isoforms have been found for this gene.[provided by RefSeq, Feb 2011]